OpenNN  2.2
Open Neural Networks Library
Classes | Public Member Functions | Private Attributes | List of all members
OpenNN::SimulatedAnnealingOrder Class Reference

#include <simulated_annealing_order.h>

Inheritance diagram for OpenNN::SimulatedAnnealingOrder:
OpenNN::OrderSelectionAlgorithm

Classes

struct  SimulatedAnnealingOrderResults
 

Public Member Functions

 SimulatedAnnealingOrder (void)
 
 SimulatedAnnealingOrder (TrainingStrategy *)
 
 SimulatedAnnealingOrder (const tinyxml2::XMLDocument &)
 
 SimulatedAnnealingOrder (const std::string &)
 
virtual ~SimulatedAnnealingOrder (void)
 
const double & get_cooling_rate (void) const
 
const double & get_minimum_temperature (void) const
 
void set_default (void)
 
void set_cooling_rate (const double &)
 
void set_minimum_temperature (const double &)
 
size_t get_optimal_selection_loss_index (void) const
 
SimulatedAnnealingOrderResultsperform_order_selection (void)
 
Matrix< std::string > to_string_matrix (void) const
 
tinyxml2::XMLDocument * to_XML (void) const
 
void from_XML (const tinyxml2::XMLDocument &)
 
void write_XML (tinyxml2::XMLPrinter &) const
 
void save (const std::string &) const
 
void load (const std::string &)
 
- Public Member Functions inherited from OpenNN::OrderSelectionAlgorithm
 OrderSelectionAlgorithm (void)
 
 OrderSelectionAlgorithm (TrainingStrategy *)
 
 OrderSelectionAlgorithm (const std::string &)
 
 OrderSelectionAlgorithm (const tinyxml2::XMLDocument &)
 
virtual ~OrderSelectionAlgorithm (void)
 
TrainingStrategyget_training_strategy_pointer (void) const
 
bool has_training_strategy (void) const
 
const size_t & get_maximum_order (void) const
 
const size_t & get_minimum_order (void) const
 
const size_t & get_trials_number (void) const
 
const bool & get_reserve_parameters_data (void) const
 
const bool & get_reserve_loss_data (void) const
 
const bool & get_reserve_selection_loss_data (void) const
 
const bool & get_reserve_minimal_parameters (void) const
 
const PerformanceCalculationMethodget_loss_calculation_method (void) const
 
const bool & get_display (void) const
 
const double & get_selection_loss_goal (void) const
 
const size_t & get_maximum_iterations_number (void) const
 
const double & get_maximum_time (void) const
 
const double & get_tolerance (void) const
 
std::string write_loss_calculation_method (void) const
 
void set_training_strategy_pointer (TrainingStrategy *)
 
void set_default (void)
 
void set_maximum_order (const size_t &)
 
void set_minimum_order (const size_t &)
 
void set_trials_number (const size_t &)
 
void set_reserve_parameters_data (const bool &)
 
void set_reserve_loss_data (const bool &)
 
void set_reserve_selection_loss_data (const bool &)
 
void set_reserve_minimal_parameters (const bool &)
 
void set_loss_calculation_method (const PerformanceCalculationMethod &)
 
void set_loss_calculation_method (const std::string &)
 
void set_display (const bool &)
 
void set_selection_loss_goal (const double &)
 
void set_maximum_iterations_number (const size_t &)
 
void set_maximum_time (const double &)
 
void set_tolerance (const double &)
 
Vector< double > perform_minimum_model_evaluation (const size_t &)
 
Vector< double > perform_maximum_model_evaluation (const size_t &)
 
Vector< double > perform_mean_model_evaluation (const size_t &)
 
Vector< double > get_final_losss (const TrainingStrategy::Results &) const
 
Vector< double > perform_model_evaluation (const size_t &)
 
Vector< double > get_parameters_order (const size_t &) const
 
void delete_selection_history (void)
 
void delete_loss_history (void)
 
void delete_parameters_history (void)
 
void check (void) const
 

Private Attributes

double cooling_rate
 
double minimum_temperature
 

Additional Inherited Members

- Public Types inherited from OpenNN::OrderSelectionAlgorithm
enum  PerformanceCalculationMethod { Minimum, Maximum, Mean }
 
enum  StoppingCondition {
  MaximumTime, SelectionLossGoal, MaximumIterations, MaximumSelectionFailures,
  MinimumTemperature, AlgorithmFinished
}
 
- Protected Attributes inherited from OpenNN::OrderSelectionAlgorithm
TrainingStrategytraining_strategy_pointer
 
Vector< size_t > order_history
 
Vector< double > selection_loss_history
 
Vector< double > loss_history
 
Vector< Vector< double > > parameters_history
 
size_t minimum_order
 
size_t maximum_order
 
size_t trials_number
 
PerformanceCalculationMethod loss_calculation_method
 
bool reserve_parameters_data
 
bool reserve_loss_data
 
bool reserve_selection_loss_data
 
bool reserve_minimal_parameters
 
bool display
 
double selection_loss_goal
 
size_t maximum_iterations_number
 
double maximum_time
 
double tolerance
 

Detailed Description

This concrete class represents a simulated annealing algorithm for the order selection of a neural network.

Definition at line 47 of file simulated_annealing_order.h.

Constructor & Destructor Documentation

◆ SimulatedAnnealingOrder() [1/3]

OpenNN::SimulatedAnnealingOrder::SimulatedAnnealingOrder ( TrainingStrategy new_training_strategy_pointer)
explicit

Training strategy constructor.

Parameters
new_training_strategy_pointerPointer to a training strategy object.

Definition at line 38 of file simulated_annealing_order.cpp.

◆ SimulatedAnnealingOrder() [2/3]

OpenNN::SimulatedAnnealingOrder::SimulatedAnnealingOrder ( const tinyxml2::XMLDocument &  simulated_annealing_order_document)
explicit

XML constructor.

Parameters
simulated_annealing_order_documentPointer to a TinyXML document containing the simulated annealing order data.

Definition at line 62 of file simulated_annealing_order.cpp.

◆ SimulatedAnnealingOrder() [3/3]

OpenNN::SimulatedAnnealingOrder::SimulatedAnnealingOrder ( const std::string &  file_name)
explicit

File constructor.

Parameters
file_nameName of XML simulated annealing order file.

Definition at line 50 of file simulated_annealing_order.cpp.

Member Function Documentation

◆ from_XML()

void OpenNN::SimulatedAnnealingOrder::from_XML ( const tinyxml2::XMLDocument &  document)

Deserializes a TinyXML document into this simulated annealing order object.

Parameters
documentTinyXML document containing the member data.

Definition at line 948 of file simulated_annealing_order.cpp.

◆ load()

void OpenNN::SimulatedAnnealingOrder::load ( const std::string &  file_name)

Loads a simulated annealing order object from a XML-type file.

Parameters
file_nameName of simulated annealing order XML-type file.

Definition at line 1269 of file simulated_annealing_order.cpp.

◆ save()

void OpenNN::SimulatedAnnealingOrder::save ( const std::string &  file_name) const

Saves to a XML-type file the members of the simulated annealing order object.

Parameters
file_nameName of simulated annealing order XML-type file.

Definition at line 1254 of file simulated_annealing_order.cpp.

◆ set_cooling_rate()

void OpenNN::SimulatedAnnealingOrder::set_cooling_rate ( const double &  new_cooling_rate)

Sets the cooling rate for the simulated annealing.

Parameters
new_cooling_rateTemperature reduction factor.

Definition at line 113 of file simulated_annealing_order.cpp.

◆ set_minimum_temperature()

void OpenNN::SimulatedAnnealingOrder::set_minimum_temperature ( const double &  new_minimum_temperature)

Sets the minimum temperature for the simulated annealing order selection algorithm.

Parameters
new_minimum_temperatureValue of the minimum temperature.

Definition at line 147 of file simulated_annealing_order.cpp.

◆ to_XML()

tinyxml2::XMLDocument * OpenNN::SimulatedAnnealingOrder::to_XML ( void  ) const

Prints to the screen the simulated annealing order parameters, the stopping criteria and other user stuff concerning the simulated annealing order object.

Definition at line 610 of file simulated_annealing_order.cpp.

◆ write_XML()

void OpenNN::SimulatedAnnealingOrder::write_XML ( tinyxml2::XMLPrinter &  file_stream) const

Serializes the simulated annealing order object into a XML document of the TinyXML library without keep the DOM tree in memory. See the OpenNN manual for more information about the format of this document.

Definition at line 811 of file simulated_annealing_order.cpp.


The documentation for this class was generated from the following files: