OpenNN  2.2
Open Neural Networks Library
Classes | Public Member Functions | Private Attributes | List of all members
OpenNN::MatthewCorrelationOptimizationThreshold Class Reference

#include <matthew_correlation_optimization_threshold.h>

Inheritance diagram for OpenNN::MatthewCorrelationOptimizationThreshold:
OpenNN::ThresholdSelectionAlgorithm

Classes

struct  MatthewCorrelationOptimizationThresholdResults
 

Public Member Functions

 MatthewCorrelationOptimizationThreshold (void)
 
 MatthewCorrelationOptimizationThreshold (TrainingStrategy *)
 
 MatthewCorrelationOptimizationThreshold (const tinyxml2::XMLDocument &)
 
 MatthewCorrelationOptimizationThreshold (const std::string &)
 
virtual ~MatthewCorrelationOptimizationThreshold (void)
 
const double & get_minimum_threshold (void) const
 
const double & get_maximum_threshold (void) const
 
const double & get_step (void) const
 
void set_default (void)
 
void set_minimum_threshold (const double &)
 
void set_maximum_threshold (const double &)
 
void set_step (const double &)
 
MatthewCorrelationOptimizationThresholdResultsperform_threshold_selection (void)
 
Matrix< std::string > to_string_matrix (void) const
 
tinyxml2::XMLDocument * to_XML (void) const
 
void from_XML (const tinyxml2::XMLDocument &)
 
void write_XML (tinyxml2::XMLPrinter &) const
 
void save (const std::string &) const
 
void load (const std::string &)
 
- Public Member Functions inherited from OpenNN::ThresholdSelectionAlgorithm
 ThresholdSelectionAlgorithm (void)
 
 ThresholdSelectionAlgorithm (TrainingStrategy *)
 
 ThresholdSelectionAlgorithm (const std::string &)
 
 ThresholdSelectionAlgorithm (const tinyxml2::XMLDocument &)
 
virtual ~ThresholdSelectionAlgorithm (void)
 
TrainingStrategyget_training_strategy_pointer (void) const
 
bool has_training_strategy (void) const
 
const bool & get_reserve_binary_classification_tests_data (void) const
 
const bool & get_reserve_function_data (void) const
 
const bool & get_display (void) const
 
void set_training_strategy_pointer (TrainingStrategy *)
 
void set_default (void)
 
void set_reserve_binary_classification_tests_data (const bool &)
 
void set_reserve_function_data (const bool &)
 
void set_display (const bool &)
 
Matrix< size_t > calculate_confusion (const double &) const
 
Vector< double > calculate_binary_classification_test (const Matrix< size_t > &) const
 
void check (void) const
 

Private Attributes

double minimum_threshold
 
double maximum_threshold
 
double step
 

Additional Inherited Members

- Public Types inherited from OpenNN::ThresholdSelectionAlgorithm
enum  StoppingCondition { PerfectConfusionMatrix, AlgorithmFinished }
 
- Protected Attributes inherited from OpenNN::ThresholdSelectionAlgorithm
TrainingStrategytraining_strategy_pointer
 
bool reserve_binary_classification_tests_data
 
bool reserve_function_data
 
bool display
 

Detailed Description

This concrete class represents a Matthew's correlation optimization for the threshold selection of a neural network.

Definition at line 47 of file matthew_correlation_optimization_threshold.h.

Constructor & Destructor Documentation

◆ MatthewCorrelationOptimizationThreshold() [1/3]

OpenNN::MatthewCorrelationOptimizationThreshold::MatthewCorrelationOptimizationThreshold ( TrainingStrategy new_training_strategy_pointer)
explicit

Training strategy constructor.

Parameters
new_training_strategy_pointerPointer to a training strategy object.

Definition at line 37 of file matthew_correlation_optimization_threshold.cpp.

◆ MatthewCorrelationOptimizationThreshold() [2/3]

OpenNN::MatthewCorrelationOptimizationThreshold::MatthewCorrelationOptimizationThreshold ( const tinyxml2::XMLDocument &  matthew_correlation_optimization_document)
explicit

XML constructor.

Parameters
matthew_correlation_optimization_documentPointer to a TinyXML document containing the matthew correlation optimization data.

Definition at line 48 of file matthew_correlation_optimization_threshold.cpp.

◆ MatthewCorrelationOptimizationThreshold() [3/3]

OpenNN::MatthewCorrelationOptimizationThreshold::MatthewCorrelationOptimizationThreshold ( const std::string &  file_name)
explicit

File constructor.

Parameters
file_nameName of XML matthew correlation optimization file.

Definition at line 59 of file matthew_correlation_optimization_threshold.cpp.

Member Function Documentation

◆ from_XML()

void OpenNN::MatthewCorrelationOptimizationThreshold::from_XML ( const tinyxml2::XMLDocument &  document)

Deserializes a TinyXML document into this matthew correlation optimization object.

Parameters
documentTinyXML document containing the member data.

Definition at line 530 of file matthew_correlation_optimization_threshold.cpp.

◆ load()

void OpenNN::MatthewCorrelationOptimizationThreshold::load ( const std::string &  file_name)

Loads a matthew correlation optimization object from a XML-type file.

Parameters
file_nameName of matthew correlation optimization XML-type file.

Definition at line 661 of file matthew_correlation_optimization_threshold.cpp.

◆ save()

void OpenNN::MatthewCorrelationOptimizationThreshold::save ( const std::string &  file_name) const

Saves to a XML-type file the members of the matthew correlation optimization object.

Parameters
file_nameName of matthew correlation optimization XML-type file.

Definition at line 646 of file matthew_correlation_optimization_threshold.cpp.

◆ set_maximum_threshold()

void OpenNN::MatthewCorrelationOptimizationThreshold::set_maximum_threshold ( const double &  new_maximum_threshold)

Sets the maximum value of the threshold selection algotihm.

Parameters
new_maximum_thresholdMaximum threshold for the algorithm.

Definition at line 147 of file matthew_correlation_optimization_threshold.cpp.

◆ set_minimum_threshold()

void OpenNN::MatthewCorrelationOptimizationThreshold::set_minimum_threshold ( const double &  new_minimum_threshold)

Sets the minimum value of the threshold selection algotihm.

Parameters
new_minimum_thresholdMinimum threshold for the algorithm.

Definition at line 122 of file matthew_correlation_optimization_threshold.cpp.

◆ set_step()

void OpenNN::MatthewCorrelationOptimizationThreshold::set_step ( const double &  new_step)

Sets the step between two iterations of the threshold selection algotihm.

Parameters
new_stepDifference of threshold between two consecutive iterations.

Definition at line 172 of file matthew_correlation_optimization_threshold.cpp.

◆ to_XML()

tinyxml2::XMLDocument * OpenNN::MatthewCorrelationOptimizationThreshold::to_XML ( void  ) const

Prints to the screen the matthew correlation optimization parameters, the stopping criteria and other user stuff concerning the matthew correlation optimization object.

Definition at line 367 of file matthew_correlation_optimization_threshold.cpp.

◆ write_XML()

void OpenNN::MatthewCorrelationOptimizationThreshold::write_XML ( tinyxml2::XMLPrinter &  file_stream) const

Serializes the Matthew's correlation optimization threshold object into a XML document of the TinyXML library without keep the DOM tree in memory. See the OpenNN manual for more information about the format of this document.

Definition at line 472 of file matthew_correlation_optimization_threshold.cpp.


The documentation for this class was generated from the following files: